Warum Photosystem 1 und 2?
Die beiden Photosysteme besitzen unterschiedliche Aufgaben: Photosystem II nutzt Lichtenergie für die Spaltung eines Wassermoleküls, was für die Bildung von Elektronen, Protonen und Sauerstoff sorgt. Photosystem I benötigt Lichtenergie, um zwei Elektronen auf NADP+ zu übertragen und es zu NADPH zu reduzieren.
Warum gibt es zwei Photosysteme?
Die zwei in Reihe geschalteten Photosysteme II und I sind nötig, um die Potentialdifferenz zwischen den Elektronen des Wassers und des NADPH von 1,13 Volt zu überbrücken. Dazu werden die Elektronen zweimal auf ein höheres Energieniveau gehoben.
Was ist das Fotosystem 2?
Photosystem II (PSII) ist ein Komplex von Membranproteinen, die in der Thylakoidmembran höherer Pflanzen und Algen vorkommen. PSII fängt Lichtenergie für die Umwandlung in chemische Energie auf und gibt während der Photosynthese Sauerstoff in die Atmosphäre frei, aber seine Struktur und Funktion sind kaum verstanden.
Was ist das Fotosystem 1?
Das Photosystem I (PS I) ist ein Proteinkomplex aus mehreren Membranproteinen, der im Zuge der Photosynthese eine Oxidation von Plastocyanin und die Reduktion von Ferredoxin durch absorbierte Photonen katalysiert. h., sie übertragen die absorbierte Strahlungsenergie auf das Reaktionszentrum.
Warum P680 und P700?
Die speziellen Chlorophyll a-Paare der beiden Photosysteme absorbieren unterschiedliche Wellenlängen des Lichts. Das spezielle Paar im PSII absorbiert am besten bei 680 nm, während das spezielle Paar im PSI am besten bei 700 nm absorbiert. Aus diesem Grund werden die speziellen Paare P680 bzw. P700 genannt.
Welche Aufgabe hat das Photosystem 2 innerhalb der gesamten elektronentransportkette?
Durch die Lichtenergie wird eine Elektronentransportkette in Gang gesetzt. Im Photosystem II werden in einem Zyklus mittels 4 Lichtquanten Elektronen vom Wasser an ein Chinon übertragen und gleichzeitig Protonen aus der Wasserspaltung freigesetzt. Dabei entsteht als Nebenprodukt Sauerstoff.
Wo befinden sich die Pigmente im Photosystem 2?
Die photosynthetischen Pigment-Proteinkomplexe sind inhomogen über das Thylakoid- system verteilt, wobei das Photosystem II (PS II) und dessen peripherer Lichtsammler- komplex (LHC II) vorwiegend in den Granathylakoiden und das Photosystem I (PS I) mit dessen Antennenkomplex (LHC I) sowie die ATP-Synthase (ATPase) in …
Warum heißt Photosystem 2 P680?
Durch ihre enge räumliche Nähe zueinander ist ihr Energieniveau durch exzitonische Wechselwirkungen abgesenkt, so dass sie ihr Absorptionsmaximum bei 680 nm besitzen. Aus diesem Grund werden sie auch als P680 bezeichnet.
Wie läuft die Lichtreaktion ab?
Die Lichtreaktion läuft über die Photosysteme der Pflanze, in denen Elektronen durch Lichtabsorption auf ein höheres energetisches Niveau angehoben werden. In enger räumlicher Nähe zu den Photosystemen befinden sich Lichtsammelkomplexe, welche das ebenfalls lichtabsorbierende Molekül Chlorophyll enthalten.
Welche Aufgaben hat das Fotosystem 2 innerhalb der gesamten Elektronentransportkette?
Durch die Lichtenergie wird eine Elektronentransportkette in Gang gesetzt. Im Photosystem II werden in einem Zyklus mittels 4 Lichtquanten Elektronen vom Wasser an ein Chinon übertragen und somit ein Protonengradient über die Membran generiert. Dabei entsteht als Nebenprodukt Sauerstoff.
Welchen Vorteil hat ein niedriger Lichtkompensationspunkt für eine Pflanze?
Das sieht man vor allem an dem niedrigen Lichtkompensationspunkt. Bereits bei niedrigen Lichtintensitäten überwiegt hier die Fotosynthese. Hohe Lichtintensitäten bringen Schattenpflanzen bzw. Schattenblättern dagegen keinen Vorteil, der Lichtsättigungspunkt ist bereits bei niedrigen Lichtintensitäten erreicht.
Was bewirkt die Elektronentransportkette in der inneren Mitochondrienmembran?
Elektronenüberträger Ubichinon (Coenzym Q) und Cytochrom c, die in die innere Mitochondrienmembran eingelagert bzw. verankert sind, beteiligt. Der durch die Elektronentransportkette hervorgerufene elektrochemische Gradient wird für die ATP-Synthese genutzt (Oxidative Phosphorylierung).